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LIQUID CRYSTALS, 1989, VOL. 5,  No. 6, 1827-1840 

An experimental investigation of electromechanical coupling in 
cholesteric liquid crystals 

by N. V. MADHUSUDANA and R. PRATIBHA 
Raman Research Institute, Bangalore 560080, India 

Cholesteric liquid crystals which have a helical arrangement of oriented chiral 
molecules are expected to show novel cross couplings between fluxes and forces. 
The most convincing demonstration of these couplings is through a dynamical 
effect on the structure. Though Lehmann found a rotation of the structure under 
a temperature gradient in 1900, there has been no subsequent experiment confirming 
the same. We argue that it is very difficult to obtain a sufficiently weak anchoring 
of the director at the solid-cholesteric interface which is a necessary condition for 
the occurrence of Lehmann rotation. In order to achieve a practically zero anchoring 
energy at the surface, we have devised a simple technique of floating essentially flat 
cholesteric drops in the isotropic phase. Using this configuration we study the 
electromechanical coupling which produces a rotation of the structure under the 
action of a DC electric field. Using measurements on samples with different values 
of the pitch the relevant electromechanical coefficient of the materials investigated 
is found to satisfy the relation v E  = -0.6 x 10-’2(q/m-’)Jm-2, where q is the 
wavevector of the helix, whose sign is positive (negative) for a right (left) handed 
structure, confirming that vE is hydrodynamic in origin. 

1. Introduction 
In parity conserving systems, the Curie or Von Neumann principle [ 1 ,  21 requires 

that the symmetry of physical effects must be contained in the causes which give rise 
to them. In chiral systems like the cholesteric, the Curie principle predicts novel cross 
couplings between fluxes and forces [3]. The chiral interactions are cooperative in a 
cholesteric resulting in a macroscopic manifestation of the same. We can hence expect 
the cross couplings to be relatively large and to lead to clearly observable effects. 
Indeed Lehmann [4] found such an effect soon after the discovery of liquid crystals. 
Oseen [5] summarized his observations in the following manner: “He found that in 
certain cases a substance spread out between two glass surfaces would be put into 
motion, when influenced by a flow of heat coming from below, during which motion 
the different drops of liquid seemed to be in violent rotation. Further investigations 
convinced Lehmann that in this case it was not the drop itself, but the structure, that 
moved.” The thermomechanical effect results in an angular momentum density of the 
director even though the applied force, viz., the temperature gradient, has the nature 
of a polar vector. 

Leslie [6] and Lubensky [7] have developed hydrodynamic theories of the cholesteric 
phase which lead to solutions corresponding to Lehmann rotation. We summarize the 
theoretical results in the next section. As we shall see, the cholesteric is characterized 
by at least two thermomechanical coefficients. It is obviously very interesting to 
confirm experimentally the Lehmann rotation phenomenon which arises due to a 
particular combination of the coefficients. But, to our knowledge, the Lehmann 
experiment has never been reproduced, though there have been a few attempts 
including one in our laboratory [8] during the past two decades. Consequently, 
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1828 N. V. Madhusudana and R. Pratibha 

alternative experimental geometries have been suggested in the literature for 
determining the thermomechanical coefficients [9-1 I]. 

The only claim of an experimental determination of a thermomechanical coupling 
coefficient is due to Eber and Janossy [ 12, 131. They have used a mixture of two liquid 
crystals which shows a compensation temperature T,. The medium has a left-handed 
helical structure below T,. The pitch increases with increase of temperature to become 
co and reverse sign at T,, i.e., the structure becomes right handed above T,. In the 
experiment, a homeotropically aligned sample near T, was subjected to a transverse 
temperature gradient (dT/dx). This results in a tilting of the director. In a linear 
approximation the tilt angle is given by 

AeK L2 - 4z2 dT 
K33 8 dx 

- 6(z) = - 

where L is the thickness of the sample, K33 the bend elastic constant. Assuming that 
the thermomechanical coefficients are independent of the magnitude or sign of 
q( = 27c/P) Eber and Janossy derived 

AeF = A3 + K2,dqldT (2)  

where A3 is the thermomechanical coupling coefficient in the notation used in $2 and 
K22 the twist elastic constant. Eber and Janossy have measured the deformation by an 
optical technique, and estimated K,,dq/dT by an independent experiment. (1) and (2) 
can then be used to calculate A 3 .  However, as we shall see in the next section, the cross 
coupling term which arises due to the helical arrangement of the cholesteric should 
vanish when q = 0, i.e. at the compensation temperature. (Indeed, the theory requires 
that A3 cc y and should change sign with that of q.) Eber and Janossy assumed that 
,I3 is independent of q in deriving equations (1) and (2), i.e., they assume in effect that 
the thermomechanical coefficient is molecular rather than structural in origin (and in 
that case, A3 can be expected to be very small). Indeed recently there is some con- 
troversy in the literature on the interpretation of the experiments of Eber and Janossy 
[14-161. In any case our own results to be presented in $3 clearly show that A3 cc y, 
confirming that the origin of A3 is indeed hydrodynamic. 

Janossy [17, 181 has conducted another interesting experiment in which a planar 
aligned cholesteric sample is taken between two discs, one of which is rotated with 
reference to the other. He then observed that small (1-2pm thick) dust particles 
drifted radially. For one sense of rotation, the particles concentrated near the axis of 
rotation, while for the opposite sense, they drifted away from the axis. He has 
interpreted the result in terms of a ‘diffuso-mechanical’ coupling, in analogy with the 
thermomechanical coefficient p8 of $2. However, it has also been suggested that the 
shear flow induces a secondary flow of the material with the same characteristic 
features [19] and very careful experiments along with a detailed analysis are necessary 
to separate the two effects. 

Thus, it would appear that apart from the Lehmann experiment, up to now there 
is no unequivocal demonstration of the cross coupling terms in cholesteric liquid 
crystals. The most convincing experiment would of course be one which leads to a 
dynamic instability in the structure rather than a static one. In the present paper, we 
report on such an experiment leading to a Lehmann rotation of carefully prepared 
cholesteric drops under the action of a force with a polar character. We have found 
it convenient to use an electric field rather than a temperature gradient, i.e., we 
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Electromechanical coupling in cholesterics 1829 

demonstrate an electromechanical coupling. A preliminary report of this investigation 
has been published recently [20]. 

We give a brief summary of the theoretical background in $2. The experimental 
details and the results are given in §3. We end with some concluding remarks in $4. 

2. Theoretical background 
Lehmann himself tried to explain his observation of the rotation phenomenon in 

the cholesteric drops [4]. He assumed that the molecules in the drops are arranged 
such that the structure looks like a turbine blade and noted that the upwelling liquid 
under the action of the temperature gradient would then set the drop into rotation. 

A detailed hydrodynamic theory of cholesteric liquid crystals was developed by 
Leslie [6, 211. For a cholesteric subjected to a temperature gradient the entropy 
production rate reads as 

where the suffixes indicate components in a suitable coordinate system, repeated 
indices indicating the usual summation convention. S is the entropy density, T the 
temperature, cril the hydrodynamic stress tensor, A ,  the symmetric part of the velocity 
gradient tensor, g: the intrinsic body force per unit volume, N the rate of change of 
director with reference to the background liquid, q1 the heat flux, T,, the temperature 
gradient along the direction i .  The prime indicates that we are considering only the 
non-equilibrium part. The entropy rate can be considered as a sum of products of 
fluxes and conjugate forces and as usual, one assumes that the fluxes linearly depend 
on all the forces. This leads to the following set of relations [21, 91 

where the superscript N stands for nematic, i.e. the corresponding expression is the 
same as in the nematic phase (Leslie [21]). k ,  and k2 are the usual anisotropic 
conductivity coefficients present even in the nematic phase. p7, pg,  A 3 ,  k ,  and k4 are 
the new coefficients which arise from the helical symmetry of the cholesteric phase. 
Conservation of angular momentum density requires 

Iz3 = p l  - p8. (7) 
Note that we have ignored terms incorporating a another material parameter 
introduced by Leslie [21] as it does not figure in the angular velocity of the director 
in the solution corresponding to the Lehmann rotation (see equation 12). 

Prost [9] reduced the number of coefficients to two by using the Onsager reciprocal 
relations which in the present case yield 

and 
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1830 N. V. Madhusudana and R. Pratibha 

where the negative sign is a consequence of the different time reversal symmetries of 
a;, and 4:. 

de Gennes [22] has pointed out that in general any transport current would lead 
to similar cross coupling terms and for example if the external field is electric in 
nature, we get electromechanical coupling coefficients in place of the thermo- 
mechanical coefficients introduced above. The electric field E would then correspond 
to - (VT/T) .  Hereafter the suffix E indicates electromechanical coefficients. For 
example, using de Gennes notation, 

vE = k3E. (10) 

We can also note that all the terms in equations (4)-(6) containing the Levicivita 
tensor erpq change sign when the coordinate system is reflected in a mirror. Then the 
cross coupling coefficients k3 and k, must also change sign, i.e. they can only have a 
non-zero value for chiral systems. Since the handedness of the helix changes sign 
under reflection, the coupling coefficients must be odd functions of q, and in the 
simplest approximation, particularly for small values of q, they are a q. This would 
of course mean that in a nematic or in a compensated cholesteric with q = 0, the cross 
coupling does not exist. 

Lubensky [7] has developed a hydrodynamic theory of cholesterics valid for 
spatial distortions whose wavelength is 9 P, the pitch. He again gets cross coupling 
terms similar to those in the Leslie formation. In his first paper Lubensky [7] dropped 
the k3 term, which would lead to a rotation of the cholesteric under the action of a 
temperature gradient, considering it as a highly improbable behaviour. But in his later 
paper [26], following the argument of Martin et al. [24], he recognized that such a 
rotation would crucially depend on the boundary conditions. Martin et al. [24] 
developed a general theory of hydrodynamics of layered systems applicable to 
cholesterics also, while the Lubensky formulation is specifically meant for cholesterics. 

Very recently Brand and Pleiner [27] have pointed out that the thermomechanical 
Lehmann effect has a static contribution in addition to the hydrodynamic one 
discussed above. However, the former does not exist for the electromechanical case, 
and we shall not discuss the static contribution in the present paper. 

Returning now to the Lehmann experiment, a solution corresponding to the 
rotation of the structure was derived by Leslie [6] on the basis of his hydrodynamic 
theory. Let us consider a cholesteric sample with its helical axis along the z direction 
sandwiched between two glass plates. If a temperature gradient (- VTjT = E )  acts 
along the helical axis, the torque balance equation at any given point yields, using the 
notation of de Gennes [22] 

where y1  = clj - a2 is the difference between two of the Leslie viscosity coefficients 
(note that the sign of yI is opposite to that used by Leslie [6]). The above equation can 
be integrated by using appropriate boundary conditions. An extremely interesting 
solution is obtained if the anchoring energy for azimuthal orientation is zero. In that 
case d4 /dz  = qo (= 27t/P) at both the boundaries and hence a constant in the sample. 
The solution is then of the form 

vEt 
YI 

4 = q o z + - + + ,  
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Electromechanical coupling in cholesterics 1831 

where C is a constant of integration. The director then obviously rotates with a 
constant angular velocity given by vE/y,. Leslie thus concluded that the rotation 
phenomenon observed by Lehmann was a consequence of the cross coupling term v. 

It is obvious that the above analysis requires that (a)  the angular velocity is 
proportional to the temperature gradient (E) ,  (b) the sense of rotation should change 
if E is reversed, and (c) since the coupling coefficient v K q, the sense of rotation 
should be opposite for left handed helices (q  < 0), compared to that for right handed 
helices (q  > 0). The phenomenological theory does not put any restrictions on the 
sign of v for a given sign of q. This should essentially depend on the chemical nature 
of the material used. 

The most convincing demonstration of the cross coupling coefficient would be to 
reproduce the Lehmann rotation experiment and check that the sense of rotation 
changes with the signs of E and q, for the given system. However, as we noted in $1, 
to our knowledge, the Lehmann experiment has never been reproduced. 

We believe the reason for this negative result is that in none of the attempts the 
anchoring energy at the bounding surfaces was sufficiently weak. We can indeed 
estimate the allowed upper limit for the anchoring energy if the cholesteric structure 
has to be set in rotation. To simplify the argument let us assume that the upper surface 
at z = D is free and has zero anchoring energy. The lower surface which rests on a 
glass plate is supposed to have an anchoring energy given by (W/2) sin2(40) where 40 
is the angle made by the director with reference to the easy axis at z = 0. In this case 
the restoring torque on the director due to this anchoring energy at the z = 0 surface 
is W sin 40 cos &, which has a maximum value when 4o = 7114. We could then 
assume that the surface anchoring can be overcome if the angle &, exceeds 71/4 due to 
the action of the thermomechanical coupling, and the structure could then rotate, 
though not freely. We can estimate the maximum allowed value of W by solving the 
problem in the static limit. The surface torque balance equation is 

The bulk torque balance equation in the static limit is 

d2  4 K22 - = vE. 
dz2 

As we have free a surface at z = D; (d$/dz),=, = qo. The solution then reads 
vE 4 = -z2 + qz + $0, 

2K22 
where 

Using this at z = 0, we get 

v has the dimension of an energy/unit area and, as we noted earlier, v cc qo. A 
dimensional estimate gives 

where x - 1 .  This gives v - 10-6Jmp2. 
v = xK22 qo 3 (18) 
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1832 N. V. Madhusudana and R. Pratibha 

If & = n/4, we get W - lO-'J. This is equal to an extrapolation length 
[22] L = K22/W - 10pm. If the drops have to rotate the anchoring energy must be 
weaker than this. To our knowledge, measurements of the azimuthal anchoring 
energy are not available, but for the polar angle 8, a silicon monoxide coated surface 
gives an extrapolation length of only -0.1 pm [28, 291 and it is not easy to obtain 
surfaces with weak anchoring. We could hence conclude that the azimuthal anchoring 
with an extrapolation length > 10pm is also difficult to achieve on a solid surface. If 
the cholesteric is in contact with solid surfaces on both sides, we can expect that the 
anchoring energy must be much weaker than the above estimate to obtain any 
rotation of the cholesteric. We believe that in none of the earlier attempts to reproduce 
Lehmann rotation the anchoring was sufficiently weak for the structure to rotate. 

3. Experimental technique and results 
It is clear from the discussion in the previous section that cholesteric drops which 

are in contact with glass plates are not suitable for observing the Lehmann rotation 
phenomenon. On the other hand, one can expect that the azimuthal anchoring energy 
at a cholesteric-isotropic interface to be essentially zero. With this idea in mind, we 
first tried to sandwich cholesteric drops between two glass plates coated with 
glycerine. But this resulted only in spherical drops which do not have a suitable 
geometry. We found that a convenient method of getting the required type of drops 
was to dissolve in the cholesteric a few per cent of Lixon, which is a non-mesomorphic 
epoxy compound. This results in a lowering of the cholesteric-isotropic transition 
temperature, and a broad two phase region. Moreover, one can form cholesteric 
drops which no longer have a spherical shape but have a flattened appearance. More 
interestingly, they are surrounded by the isotropic phase on all sides (figure 1). The 
reason for this configuration is that the epoxy compound has a strong affinity for 
glass, i.e. it wets the glass much more efficiently than the cholesteric compound. The 
cholesteric phase has a lower concentration of the epoxy compound than the isotropic 
phase, which would hence prefer to be close to the glass plates. We can also note that 
the interfacial tension between the cholesteric and its own isotropic phase is likely to 
be < 10-6N/m (see for example [30]) and hence the energy required to change the 
shape of the drop from the spherical shape is negligible. Further, the relative difference 
in density between the cholesteric and its own isotropic phase is also very small, 

Figure 1. Vertical cross section of the flattened cholesteric droplet surrounded by the isotropic 
phase (I). The glass plates are shown by shaded area. 
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- lop3 which enables the cholesteric drop to be surrounded by the isotropic phase on 
all sides. This results in the configuration shown in figure 1. In thin cells, with the glass 
plates separated by N 8 pm, we could easily form cholesteric drops with a lateral 
diameter of 20-50 pm using this technique. It is clear that the gap betwezn the plates 
is too small for having a steady temperature gradient between them. However, as we 
mentioned earlier, cross couplings can be expected for any transport current. It is 
extremely convenient to apply a DC electric field to such thin cells. Hence we chose 
to look for the electromechanical rather than the thermomechanical coupling. If vE is 
the relevant coupling coefficient, one can write, on the basis of dimensional arguments 

VE = nKz2q/V, (19) 
where n is a small number N 1 and V is a characteristic voltage of the material. 
Identifying it with the redox potential of the mesogen, V - 1 volt and using 
KZ2 - 10-I2N [31], we get I v E / q  N 1O-”Jmp’. However, we must note that the 
director also couples to an external electric field through the dielectric anisotropy. 
Since the field has to be applied along the helical axis in the present experiment, we 
have chosen materials with negative dielectric anisotropy to avoid a change in the 
orientation of the director due to this coupling. We made a binary mixture of alkoxy 
phenyl trans alkyl cyclohexyl carboxylates (obtained from the Merck Co.) to get a 
room temperature nematic with a dielectric anisotropy 2: - 1. Materials with negative 
dielectric anisotropy and with ionic impurities can exhibit however electrohydro- 
dynamic instabilities under the action of a DC field beyond a threshold voltage [32]. 
We checked that our material did not exhibit such instabilities up to about 8 volts. By 
dissolving a small percentage of Lixon, we could get a nematic-isotropic two phase 
region at room temperature. The nematic drops had the bipolar configuration [33,34] 
characteristic of a tangential boundary condition at the interface. In order to get 
cholesteric drops, we added suitable chiral compounds to the mixture. Left and right 
handed helical arrangements were obtained by dissolving cholesteryl chloride 
and methyl butyl benzoyloxy heptyloxy cinnamate respectively in the sample. The 
handedness of the helical arrangement was determined using a wedge shaped sample 
of the chiralised material (without Lixon). The relative movement of the dark brushes 
near the edge of the wedge in relation to that of the analyser can then be used to find 
the sense of the helix [35]. The pitch could be varied by changing the concentration 
of the chiral dopant, and was measured using the Can0 Wedge technique. 

In thick cells, we can see spherical cholesteric drops with a characteristic radial x 
line of strength + 2 (figure 2 (a)) [36]. The director pattern in cholesteric drops shown 
in figure 3 was described originally by Pryce and Frank and quoted by Robinson et al. 
[37]. As the thickness of the cell is reduced, the drops get flattened and then it is clear 
from figure 2 (b) that the x line extends only in the lateral curved region of the drop. 
In thin cells, with D N 8 pm, cholesteric drops with a lateral diameter of 20-50 pm 
can be formed. These are highly flattened versions of the spherical drops described 
earlier. The director configuration is stretched such that the x line is now confined 
to the small lateral curved region, and has a length - Dj2. The drops are surrounded 
by the isotropic phase on all sides, and since the director has a tangential alignment 
at the interface, the central ‘flat’ region of the drop has an essentially planar texture 
with the helical axis perpendicular to the flat surface. However, in each horizontal 
layer, the director has a splay-bend distortion arising from the presence of the x line 
at the edge and we can see 4 of the 8 dark brushes emanating from the x line for 
suitable settings of the polarizer and analyser which are set at suitable angles to get 
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1834 N. V. Madhusudana and R. Pratibha 

Figure 2. (a) Photograph of the cholesteric droplet showing the x defect line in a nearly 
spherical drop in a sample of thickness N 150 pm, crossed polarizers ( x 1300). (Note that 
the line defect extends only in the curved region of the droplet.) (b) Flat droplet of a left 
handed cholesteric when E = 0. Analyser rotated by - 20' from the crossed position in 
relation to the polarizer. The dark brushes emanate from the short x line near the edge 
of the droplet ( x 1500). (c)-(h) Photographs of the drops shown in (b) at different times 
after the application of a voltage to the cell. (c) ,  (e),  (g) correspond to + 2 V and ( d ) ,  ( f ) ,  
(h)  to -2v. 
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Electromechanical coupling in cholesterics 1835 

Figure 3. Director orientation on the concentric spherical surfaces of a cholesteric drop 
described by a family of circles passing through a singular point (after Robinson et al. 
[371). 

the dark brushes (figure 2 (b)). We may also note that the splay-bend distortion in the 
layers can result in a flexoelectric polarization [38] which can in turn give rise to only 
a static distortion of the director field of the cholesteric drops under the action of the 
external DC field. 

In the experiment, such ‘flat’ drops are formed in cells which are made with 
electrically conducting glass plates. A DC electric field is applied to the electrodes, but 
nothing happens as the voltage is increased gradually from 0 to 2 V. At - 2 V the dark 
brushes get curved such that all of them have the same curvature, unlike in the field 
free case (figure 2 (b)). This results from a rearrangement in the director configuration 
and indicates that the reorientation of the director is easier if it is far away from the 
x line. Then the whole structure starts rotating apparently without any further 
deformation of the director field (figure 2 (c), (e),  (g) and figure 2 ( d ) ,  ( f ) ,  (h)). These 
rotating structures are indeed reminiscent of the diagrams sketched by Lehmann [4] 
(see also Chandrasekhar [39]). Detailed observations on drops of a given pitch lying 
in the range 4-10pm lead to the following results: (a) all the drops in a given sample 
rotate in the same direction for a given sense of the field: the right handed helix has 
an anticlockwise rotation when viewed along the field direction. When the voltage is 
reversed, the curvature of the dark brushes and the sense of rotation of the structure 
reverse, (b) the angular velocity increases linearly with applied voltage up to N 3.5 V 
beyond which the structure of the drop changes and the rotational velocity becomes 
a nonlinear function of the applied voltage (figure 4), (c) nematic drops do not rotate 
under the action of E, ( d )  when the handedness of the helix is reversed, the angular 
velocity also reverses sign for any given sense of the field E, (e) the angular velocity 
does not depend on the radius of the drop, showing that we have a rotation of the 
structure rather than that of the rigid body of the drop, ( f )  though the angular 
velocity is roughly similar in all drops, some drops which touch dust particles rotate 
with a lower velocity (figure 4), (g) the extrapolated angular velocity tends to zero for 
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Figure 4. Plot of the rotational velocity of the structure as a function of applied voltage. 
Different symbols correspond to different drops. The slope of the straight line which 
corresponds to the drops with the fastest angular velocity is used in the calculation of v E .  
Between 3.5V and 5 V  there is a visible disturbance in the structure of the drops and 
measurements were not possible. 

V N 1.9 V (figure 4). The last point indicates that the DC field is totally screened up 
to - 1.9V and that the redox potential of at least one of the components in the 
mixture is - 1.9 V. 

Measurements could be made on drops with different values of pitch in the range 
4-10pm. The coefficient vE (calculated using equation (23)) varies linearly with q 
(figure 5) .  The line passes through the origin, i.e. vE oc q as required by the hydro- 
dynamic theory. This also means that vE is of structural origin, with practically no 
measurable contribution from the molecular chirality. If P is 5 4 pm, for samples of 
D = 8 pm, there would be two pitches at the lateral curved edge of the drops and in 
this case the structure of the drop itself changed periodically under the action of the 
field: the central ‘flat’ part winds up to a finger print configuration with spirals from 
the centre (figure 6) and then unwinds to give the ‘Planar’ texture once in a while. If 
the pitch is too large (2 12pm) the x defect in the drop moved to the centre and this 
configuration is not suitable for the experiment. 

For a defect free planar undistorted cholesteric sample, the solution corresponding 
to the Lehmann rotation is, from equation (12) 

d4ldt = VEEIY,, (20) 
where vE (= k3E) is the electromechanical coefficient, E being the electric field. 
However, we must also note that near the mid plane of the curved periphery of the 
drop, q lies in the horizontal plane, i.e. perpendicular to E. In this case, as we 
mentioned in $2,  the pgE coefficient alone produces a linear velocity of the molecules 
along E x q [21]. This could produce a rotation of the drop, but our  observation that 
the reorientation of the director starts near the central ‘planar’ part of the drop, and 
the fact that the period of rotation is independent of the diameter of the drop shows 
that the pEE effect is indeed small and we have neglected it in further analysis. 
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Figure 5. Plot of vE as a function of q (= 2n/p). 

However, we may add that in drops with a low value of the pitch, whose structure 
changes periodically, the pSE effect may make an important contribution. In the 
present paper, we confine our attention to the drops with a larger pitch in which the 
effect of the pSE coefficient is unimportant. 

It is clear that our observations (a)  to (e) are consistent with the predictions of 
equation (20) and the requirement that vE should change sign with that of q.  However, 
before we use the data to determine vE,  we have to note that the line defect which is 
confined to the periphery of the drop also rotates with the structure. The deformation 
of the director field is extremely large near the x line and the reorientation implied by 
the motion of the defect requires a considerable energy. On the other hand, the 
electromechanical coupling which drives the rotation of the director is confined to the 
'planar' oriented flat part of the drop. The effective friction coefficient i (per unit 
length) for a slow motion of a nematic line singularity with a core has been estimated 
by Imura and Okano [40] and de Gennes [41]. They have shown that i cc s2, where 
s is the strength of the defect line. It is very likely that the x line of strength 2 would 
be coreless because of the collapse of the director in the third dimension [22]. It is easy 
to extend the formalism of [40] to this case and the result is 

i = 2Y,ISl, (21) 

which is a linear function of IsI. 
The entropy generation arises due to the rotational motion of the director (= yI ri') 

and the linear motion of the defect around the periphery of the drop, which is i u2  per 
unit length of the defect line where u is the velocity of the defect. Assuming that the 
defect has a length = D / 2 ,  we can now write an approximate energy rate balance 
equation for the entire drop: 

(22) 2nylIs(u2D/2 + nr2Dyl (d4/d t )2  3r' nr2DvEE -, 4 
dt 
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Figure 6. Flat droplets of a left handed cholesteric with pitch p = 3 6 p m  with an applied 
voltage of 2.54V. The central region of the droplets periodically change over from a 
‘planar’ configuration to a helically wound one. The two configurations can be clearly 
seen for a droplet just to the right of the centre of the photographs in (a) and (b) 
respectively ( x  1000). 
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where r is the radius of the flat drop, and we can take u = rdq5/dt for the velocity of 
the defect and its strength s = 2. We recover equation (20) in the absence of the line 
defect. But in the presence of the line defect rotating with the structure, we get 

dq5ldt = vE E/3yI .  (23)  
Using the slope of the liner part of the dq5ldt vs. E curve (figure 4), and y, N 0.7P 
typical of a room temperature nematic, we have calculated vE for samples with a few 
different values of the pitch P. The variation of vE with q is shown in figure 5. It is clear 
that vE is a linear function of q and moreover, the extrapolated line passes through the 
origin. v,/q is found to be equal to -0.6 x 10-12Jm-2, which agrees with the 
dimensional estimate made earlier. 

4. Conclusion 
The cholesteric liquid crystal has a macroscopic helical arrangement of oriented 

molecules. One could then expect that the cross coupling coefficients between fluxes 
and forces allowed by the Curie principle in such chiral systems would be quite large 
and have observable effects. The rotation of the cholesteric structure observed by 
Lehmann in 1900 has been attributed to this cross coupling. Since then, however, 
there has been no convincing demonstration of such a cross coupling term. A truly 
couple stress free boundary condition is essential to observe this phenomenon. We 
have devised a simple technique of realizing the same. For the sake of convenience, 
we have looked for an electromechanical coupling, and have been able to reproduce 
the ‘Lehmann rotation’ of cholesteric drops under an electric field. Indeed such an 
observable cross coupling appears to be unique to chiral liquid crystals, viz. cholesterics 
and chiral smectics as has been recently discussed by Brand and Pleiner [27]. We have 
checked that the phenomenon satisfies all the required symmetry properties: the 
rotational velocity linearly depends on E, and vE the coupling coefficient changes sign 
with that of q. Indeed vE K q demonstrating that vE has a structural origin. The 
cholesteric drops that we have studied do not have the ideal defect free planar 
configuration assumed in deriving the theoretical results, but the presence of the line 
defect and the associated deformation of the director field actually helps in visualizing 
the rotation of the structure. We have allowed for the entropy production involved 
in the motion of the defect line in an approximate manner, and this allows us to 
estimate the coupling coefficient vE.  In the system studied, vE/q has a negative sign, 
and it is gratifying that its value, viz. - 0.6 x J m-2 is quite close to the estimate 
made by using dimensional arguments. 

We are extending these studies to exactly compensated cholesteric mixtures 
and to other chiral liquid crystal systems. We are also planning to determine the 
thermomechanical coefficients. 

We are much obliged to Professor S. Chandrasekhar and Dr G. S. Ranganath for 
many valuable discussions. 
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